Effects of the mold temperature on the mechanical properties and crystallinity of hydroxyapatite whisker-reinforced polyetheretherketone scaffolds.
نویسندگان
چکیده
Porous and bioactive polyetheretherketone (PEEK) scaffolds have potential to replace metallic scaffolds for biologic fixation of permanent implants adjacent to trabecular bone, such as interbody spinal fusion devices. The objective of this study was to investigate the effects of the mold temperature and PEEK powder on the mechanical properties and crystallinity of hydroxyapatite (HA) whisker-reinforced PEEK scaffolds prepared using compression molding and porogen leaching. Scaffolds were prepared at mold temperatures ranging 340-390°C with a 50 or 10 μm PEEK powder, 75 vol% porosity, and 20 vol% HA whiskers. Scaffold mechanical properties were evaluated in unconfined, uniaxial compression and the PEEK matrix crystallinity was measured using specular reflectance Fourier transform infrared spectroscopy. Increased mold temperature resulted in increased compressive modulus, yield strength, and yield strain, reaching a plateau at ~370°C. HA reinforcements were observed to be segregated between PEEK particles, which inhibited PEEK particle coalescence during compression molding at temperatures less than 365°C but also ensured that bioactive HA reinforcements were exposed on scaffold strut surfaces. Increased mold temperature also resulted in decreased PEEK crystallinity, particularly for scaffolds molded at greater than 375°C. The PEEK powder size exhibited relatively minor effects on the scaffold mechanical properties and PEEK crystallinity. Therefore, the results of this study suggested that HA-reinforced PEEK scaffolds should be compression molded at 370-375°C. The apparent compressive modulus, yield strength, and yield strain for scaffolds molded at 370-375°C was 75-92 MPa, 2.0-2.2 MPa, and 2.5-3.6%, respectively, which was within the range exhibited by human vertebral trabecular bone.
منابع مشابه
Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone composite scaffolds.
The apparent mechanical properties of hydroxyapatite (HA) whisker reinforced polyetherketoneketone (PEKK) scaffolds were evaluated in unconfined, uniaxial compression to investigate the effects of the porosity (75%, 82.5% and 90%), HA content (0, 20 and 40 vol%) and mold temperature (350, 365 and 375 ( composite function)C). Increased porosity resulted in a non-linear decrease in the elastic mo...
متن کاملProcessing and tensile properties of hydroxyapatite-whisker-reinforced polyetheretherketone.
Polyetheretherketone (PEEK) was reinforced with 0-50 vol% hydroxyapatite (HA) whiskers using a novel powder processing and compression molding technique which enabled uniform mixing at high whisker content. Texture analysis showed that viscous flow during compression molding produced a preferred orientation of whiskers along the specimen tensile axis. Consequently, the elastic modulus or ultima...
متن کاملImproving the mechanical and bioactivity of hydroxyapatite porous scaffold ceramic with diopside/forstrite ceramic coating
Objective(s): Scaffolds are considered as biological substitutes in bone defects which improve and accelerate the healing process of surrounding tissue. In recent years a major challenge in biomaterials is to produce porous materials with properties similar to bone tissue. In this study, the natural bioactive hydroxyapatite scaffolds with nano Diopside /Forstrite coating was successfully synthe...
متن کاملA nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite–polyetheretherketone scaffolds
A nano-sandwich construct was built by combining two-dimensional graphene nanosheets (GNSs) and one-dimensional carbon nanotubes (CNTs) to improve the mechanical properties of hydroxyapatite-polyetheretherketone (HAP-PEEK) scaffolds for bone tissue engineering. In this nano-sandwich construct, the long tubular CNTs penetrated the interlayers of graphene and prevented their aggregation, increasi...
متن کاملEffects of hydroxyapatite reinforcement on the architecture and mechanical properties of freeze-dried collagen scaffolds.
Freeze-dried collagen scaffolds reinforced with hydroxyapatite (HA) are of clinical interest for synthetic bone graft substitutes and tissue engineering scaffolds, but a systematic evaluation of the effects of the HA reinforcement weight fraction and morphology on the mechanical properties is lacking. Therefore, freeze-dried collagen scaffolds were reinforced with either HA whiskers or an equia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part B, Applied biomaterials
دوره 101 4 شماره
صفحات -
تاریخ انتشار 2013